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Abstract
A method is proposed for the calculation of the Floquet–Green function of a
general Hamiltonian with harmonic time dependence. We use matrix continued
fractions to derive an expression for the ‘dynamical effective potential’ that
can be used to calculate the Floquet–Green function of the system. We
demonstrate the formalism for the simple case of a space-periodic (in the
tight-binding approximation) Hamiltonian with a defect whose on-site energy
changes harmonically with time. We study the local density of states for this
system and the behaviour of the localized states as a function of the different
parameters that characterize the system.

PACS numbers: 73.21.−b, 73.23.−b, 72.10.−d, 32.80.−t

1. Introduction

The study of the effect of periodic driving in a system is almost as old as physics. The study
of resonance, as it occurs in so many different physical systems, from musical instruments
to planetary motion, plays a central role in the development of classical mechanics. With
the discovery of electromagnetic induction and Maxwell’s equations, a description of the
interaction between matter and electromagnetic radiation became possible; once again, central
to this description lies the understanding of the effects of a harmonic drive in the atomic
states. Furthermore, in the field of solid state, a microscopic description of electrons inside a
crystal requires the study of the effect on the electron motion due to vibrations in the atomic
potentials (phonons). These vibrations, which have a well defined frequency, can be thought
to act, within a certain approximation (classical approximation), as a harmonically driven
(HD) potential in the electron Hamiltonian (our method can also be used for the quantum
solution of this problem, where the vibrations are treated as harmonic oscillator modes). The
study of HD Hamiltonians is therefore of significant importance because of the enormous field
of applications in solid state, atomic physics and many other fields. Despite their obvious
relevance, theoretical studies of HD Hamiltonians have been traditionally perturbative, with
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only lowest-order effects having been considered. With technological advances, high strength
HD fields have become more accessible and provide us with the possibility of new applications,
for which perturbative approaches are increasingly difficult to use.

In the last two decades, HD potentials have been studied considerably and many interesting
effects have been found theoretically (and some have been observed experimentally) such as
dynamical localization (mini-band collapse) [1, 2], photon-assisted tunnelling [3], quantum
Hamiltonian ratchets [4, 5], chaos-assisted tunnelling [6–11] and atom stabilization [12]. They
have also been used to study quantum tunnelling time [13–15], ionization [16, 17], electronic
transmission [18–22] and quantum chaos [23].

The pioneering work of Shirley [24], Zel’dovich [25] and in particular the work of Sambe
[26] laid down the theoretical foundations for a complete treatment of time-periodic potentials,
based on the same mathematical tools already developed for time-independent potentials. Of
great importance among these tools is the Green function, whose definition and application
for time-periodic systems has not been clear until recently. A Floquet–Green function method
for the solution of radiative electron scattering in a strong laser field was introduced by Faisal
[27]. More recently, the t–t ′ method [28] for treating time-dependent systems was developed
with great success. For the case of a periodic potential, this formalism provides a natural
way of defining and using the Floquet–Green function which can be used to study scattering
through this kind of potential [28]. For the case of a harmonic driving (HD) potential, we find
the Floquet Hamiltonian and derive the Floquet–Green function of the system using matrix
continued fractions (MCF). This same approach can be used to derive the Green function of a
phonon-coupled system, given the close resemblance between these two systems [29, 30]. It
has in fact been used for the case of a two state system coupled to a harmonic oscillator [31].

As an application of our method, we calculate the Floquet–Green function for a system
whose Hamiltonian is periodic in space (we use the tight-binding approximation) and has a
defect at a particular location in the lattice. We characterize the defect by its on-site energy,
which changes harmonically in time as V0 + V1 cos(ωt). This Hamiltonian could be realized
experimentally in a 1D heterostructure where a metal contact has been placed covering a small
region and is connected to an oscillating voltage source. We also believe that the problem of
conduction through a molecule placed between two metal contacts could be modelled with a
similar Hamiltonian.

In section 2 we introduce the Floquet Hamiltonian and the Floquet–Green function for
a time-periodic system. In section 3 we derive the Floquet–Green function for the case of a
HD potential using matrix continued fractions. In section 4, as an illustration of the technique
developed in section 3, we study a tight-binding Hamiltonian with a defect energy which
depends harmonically on time. We calculate the local density of states (LDOS) and study the
existence of localized states and their behaviour as a function of the different parameters of
the model. Finally, in section 5, we make some concluding remarks.

2. t–t′ method and Floquet–Green function

In our approach we use the (t, t ′) method [28] where the time variable t ′ is treated as a spatial
coordinate, and a new quasi-time variable t is introduced. Using this approach we derive the
expression for the Floquet–Green function of a general time-periodic system.

We introduce the Floquet Hamiltonian, HF , which is defined as

HF (x, t ′) = H(x, t ′) − ih̄
∂

∂t ′
(1)
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and the (t, t ′)-Schrödinger equation

ih̄
∂

∂t
χ(x, t, t ′) = HF (x, t ′)χ(x, t ′, t). (2)

It is easy to show that if χ(x, t ′, t) satisfies equation (2), then

φ(x, t) ≡ χ(x, t, t) (3)

is a solution to the Schrödinger equation

ih̄
∂

∂t
φ(x, t) = H(x, t)φ(x, t). (4)

The great advantage of the t–t′ method is that, since the Hamiltonian (equation (2)) is
independent of t, χ(x, t ′, t) can be found using the standard techniques developed for the
time-independent Hamiltonian. For example, calculation of the time propagator of the system
can then be performed without any time-ordering procedures.

By using the method of separation of variables, we can write

1χ(x, t, t ′) = e−iεt/h̄ψ(ε|x, t ′) (5)

and using this into equation (2) gives a t-independent Schrödinger equation

HF (x, t ′)ψ(ε|x, t ′) = εψ(ε|x, t ′) (6)

As a consequence of Floquet′s theorem, if H(x, t ′) is periodic in t ′ (period τ ), ψ(ε|x, t ′) is
also periodic in t ′. We define the Green function corresponding to this Floquet Hamiltonian
as

[ε − HF (x, t ′)]GF (ε|x, x ′, t ′, t ′′) = δ(x − x ′)δτ (t
′ − t ′′) (7)

where δτ (x) is the τ -periodic delta function. Because of the periodicity of the Hamiltonian,
the Floquet eigenfunctions as defined by equation (6) are periodic in time. The solution of
equation (7) can be written as

GF (ε|x, x ′, t ′, t ′′) =
∫

dε′ ∑
n

ψ∗
n (ε′|x, t ′)ψn(ε

′|x ′, t ′′)
ε − ε′ (8)

where {ψn(ε
′|x, t)} is the complete set of eigenfunctions of the Floquet–Hamiltonian

(equation (6)). From this expression it can be seen that GF (ε|x, x ′, t ′, t ′′) is periodic in
both t ′ and t ′′; therefore, it can be written as

GF (ε|x, x ′, t ′, t ′′) =
∞∑

α,β=−∞
GF

α,β(ε|x, x ′) eiαt ′ e−iβt ′′ . (9)

Similarly for HF (x, t ′), we write

HF (x, t ′) =
∞∑

γ=−∞
HF

γ (x) eiγ t ′ . (10)

Using equations (9) and (10) in (7) and equating components, we get

εGF
α,β(ε|x, x ′) −

∞∑
γ=−∞

HF
α,γ (x)GF

γ,β(ε|x, x ′) = δ(x − x ′)δα,β (11)

where HF
α,γ ≡ HF

α−γ .
In the next section we specialize equation (11) for the case of a HD Hamiltonian. We will

use the method of MCF to derive an explicit solution for the Floquet–Green function assuming
a potential that depends harmonically on time.
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3. Harmonically driven potential and matrix continued fraction method

The Hamiltonian that we consider in this section is of the general form (with no particular
representation chosen),

H = Ho + Vo + 2V1 cos(ωt ′). (12)

This general class of Hamiltonians includes a great variety of physical systems of interest. We
refer to this class of Hamiltonians as HD Hamiltonians. In section 4 we will apply the methods
developed here to a simple but nonetheless interesting system: a tight-binding model with a
defect on-site energy that depends harmonically on time. According to equations (1) and (10)
and the definition after equation (11), the Floquet Hamiltonian corresponding to equation (12)
is

HF
α,γ = (Ho + Vo − αh̄ω)δα,γ + V1(δα+1,γ + δα−1,γ ). (13)

Using this in equation (11), we get

(1Eα − HS)Gα,β − V1(Gα+1,β + Gα−1,β) = 1δα,β (14)

where

Eα ≡ ε + αh̄ω HS ≡ Ho + Vo 〈x|Gα,β |x ′〉 ≡ GF
α,β(ε|x, x ′). (15)

To solve equation (14), we use MCF. It basically follows the procedure introduced by
Martinez et al [18, 32] which has also been used by Moskalets and Büttiker [33] for the
solution of three-term recurrence relations in a HD system. Similar approaches using continued
fractions have also been used before in the solution of time-independent Hamiltonians (tight-
binding type) [34–36]. To begin, we define the operator

Fα,β ≡ Gα,βG−1
α+1,β (16)

from which we can write

F−1
α,βGα,β = Gα+1,β Fα−1,βGα,β = Gα−1,β . (17)

Using these equations in equation (14), we get

(1Eα − HS)Gα,β − (
V1F−1

α,β + V1Fα−1,β

)
Gα,β = 1δα,β . (18)

Let us consider this equation for the case α �= β,

(1Eα − HS)Gα,β − (
V1F−1

α,β + V1Fα−1,β

)
Gα,β = 0 for α �= β. (19)

A trivial solution of this equation is Gα,β = 0, for α �= β; that is, the off-diagonal components
vanish. This is expected only for the case V1 = 0. For V1 �= 0 we assume that in general the
off-diagonal elements do not vanish (at least not all of them) and therefore, from equation (19),
we get

1Eα − HS = (
V1F−1

α,β + V1Fα−1,β

)
for α �= β. (20)

Evaluating this equation for α = β + 1, we get

V1Fβ,β = Cβ+1 − V1(V1Fβ+1,β)−1V1 (21)

where, to simplify notation, we defined Cβ ≡ 1Eβ − HS . Iterating equation (21), we get

V1Fβ,β = Cβ+1 − V1
1

Cβ+2 − V1
1

Cβ+3−V1
1
...

V1

V1
V1. (22)
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Here, the notation 1
A

instead of A−1 has been used for clarity. Evaluating equation (19) for
α = β − 1, we get

V1F−1
β−1,β = Cβ−1 − V1

(
Fβ−2,βV−1

1

)
V1

= Cβ−1 − V1
1

V1F−1
β−2,β

V1. (23)

Continuing the fraction in an iterative way, we get

V1F−1
β−1,β = Cβ−1 − V1

1

Cβ−2 − V1
1

Cβ−3−V1
1
...

V1

V1
V1. (24)

We now rewrite equation (18), for α = β, as

(1Eβ − HS)Gβ,β − (
V1(V1Fβ,β)−1V1 + V1

(
V1F−1

β−1,β

)−1V1
)
Gβ,β = 1. (25)

Using equations (22) and (24), we finally get

(1Eβ − HS − Veff(Eβ))Gβ,β(ε) = 1 (26)

where

Veff(Eβ) = V↑
eff(Eβ) + V↓

eff(Eβ) (27)

with

V↑
eff(Eβ) = V1

1

Cβ+1 − V1
1

Cβ+2−V1
1
...

V1

V1
V1

V↓
eff(Eβ) = V1

1

Cβ−1 − V1
1

Cβ−2−V1
1
...

V1

V1
V1.

(28)

The off-diagonal components of the Floquet–Green function operator can be calculated by
repeated multiplication by the operators V↑

eff and V↓
eff .

Equation (26) is very interesting. It gives an expression for the diagonal part of the
Floquet–Green function of the system (from which elastic transmission and density of states
can be calculated), in which the effect of the coupling between different (Floquet) channels,
generated by the HD potential, has been ‘summed up’ into a dynamical effective potential
(DEP) that is energy dependent. This general result for the class of HD Hamiltonians is related
to the ‘pruning’ technique developed by Haule and Bonča [37] for the treatment of electron–
phonon interactions within a tight-binding lattice. Also, Pastawski and Medina [36] have
developed a similar method (‘decimation’ technique) for the treatment of electron transport
through a molecule.

It is interesting to note from equation (28) that to lowest order in E and V1,Veff =
−V1(HS)−1V1, which means that the harmonic potential generates an energy-independent
DEP which is negative (in general it will lower the energy of the perturbed eigenstates as
compared to the energy of the unperturbed ones) and is quadratic in V1. The effect of
this quadratic dependence of the effective potential has been reported before regarding the
dependence of the transmission zero and pole with the amplitude of the oscillating potential
for a δ-function potential [18] and also regarding the dynamics of the quasi-energy bands with
lowest average energy in a chain of oscillating δ-function potentials [32]. This lowest-order
correction to the potential experienced by a particle in an oscillating potential is similar to the
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so-called Franck–Condon energy which is also negative and quadratic in the coupling constant
between electrons in a lattice and phonons [38].

It is also worth noticing that our formalism goes beyond any perturbative approach in
V1 since, even if we truncate the expression for Veff to lowest order in V1, which gives
Veff(Eβ) ∼ V1

(
1

Cβ+1
+ 1
Cβ−1

)
V1, the resulting expression for Gβ,β contains all even powers

of V1. This means that truncation of Veff to lowest order still gives a Floquet–Green
function which includes contributions of an infinite number of diagrams. This feature makes
equation (26) an ideal framework for the treatment of very strong HD potentials such as those
produced by laser fields where multiphoton processes are common [39], and interesting effects
such as atom stabilization have been reported [12].

Finally, we notice that the dependence of any quantity in equation (26) on the index β is
only through the ’channel’ energy Eβ = ε + βh̄ω, where the quasi-energy ε (usually taken to
be ε ∈ [0, 1]h̄ω) always accompanies the term βh̄ω. Because of this, the index β in Eβ will
be dropped. E represents the main channel energy, which, for example, for the scattering of a
particle through this kind of potential, corresponds to the energy of the incoming particle. We
can therefore simplify even further the notation in equation (26):

GD(E) = 1

(1E − HS − Veff(E))
(29)

where GD(E) = GD(ε + αh̄ω) ≡ Gα,α(ε).
Equation (29) can also be written making use of the Green function corresponding to the

time-independent part of the Hamiltonian,

GD = GS 1

1 − Veff(E)GS
(30)

with

GS ≡ 1

1E − HS
. (31)

4. Tight-binding with defect. HD site-energy case

Electron localization in a crystal due to defects has been studied for many decades. In a
space-periodic (time-independent) potential described in the tight-binding approximation, an
irregularity in the atomic potential generates a bound state localized in the neighbourhood
of the defect [40]. If the energy mismatch between the site-energy of the defect and that of
the medium in which it is embedded is V0, the energy of the localized state is found to be
sign(V0)

√
4T 2 + V 2

0 , where T is the tunneling parameter and the allowed band of extended
states corresponds to energies between −2T and 2T .

The system we are interested in also couples the electron at the impurity with a HD
field. This system is similar to a tight-binding Hamiltonian with a defect that couples the
electron states with the degrees of freedom of localized phonons [41]. As previously shown
[29], the transmission in these two systems can be derived from a similar set of equations and
therefore presents several features in common. The main differences are: (1) the harmonic
oscillator spectrum of the phonons is bounded from below, which implies that it is impossible
for an electron to gain energy when interacting with a HO in the ground state. For a HD
potential, the electron can always gain energy (or lose it). (2) The coupling between a state
with the HO in the eigenstate N and a state with a HO state N + 1 or N − 1 depends on
N: for initial electron energy E and initial phonon state N, the probability amplitude to be
scattered into the electron state E − h̄ω and phonon state N + 1 is proportional to

√
N + 1; for
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E + h̄ω and phonon state N − 1 it is
√

N . This is not the case for the time-periodic field for
which these probability amplitudes do not depend on any parameter except the amplitude of
the HD field. (3) Phonons are usually due to thermal vibrations, which means that temperature
is an additional variable to be considered in electron–phonon coupled systems. It is not a
consideration for a HD potential which can be realized only by the application of an external
field onto the electron system. Despite these differences, the two systems can be solved in
an almost identical way, and the differences can only be attributed to the thermal averaging
(necessary in the phonon case) when the oscillator state, before the interaction with the
electron, has a large N.

We will now apply the method developed in the last section for the case of a Hamiltonian
which has its matrix elements in the site representation given by

H = H0 + (V0 + V1 cos(ωt))|0〉〈0| (32)

with

H0 ≡ −T
∑

j

(|j + 1〉〈j | + |j − 1〉〈j |) (33)

where t is associated with the tunnelling probability between adjacent sites in the lattice, V0

characterizes the defect on-site energy and V1 is the amplitude of the external HD field, which
is assumed to exist only at the defect site (j = 0 site). We have taken the on-site energy
throughout the lattice to be zero except at the defect location.

In the notation of equations (12) and (15), we have

HD = H0 + V0|0〉〈0| V1 = 1
2V1|0〉〈0|. (34)

From this, and using equations (27) and (29) we get

V↑
eff(E) = 1

4
V 2

1 |0〉〈0| 1

C1(E) − 1
4V 2

1 |0〉〈0| 1

C2(E) − 1
4V 2

1 |0〉〈0| 1
...

|0〉〈0| |0〉〈0|
|0〉〈0|

= 1

4
V 2

1 |0〉〈0| 1

C1(E) − |0〉〈0|V↑
eff(E + 1)|0〉〈0|

|0〉〈0|

= V
↑

eff(E)|0〉〈0| (35)

where the function V
↑

eff(E) is defined as

V
↑

eff(E) ≡ 1

4
V 2

1 〈0| 1

C1(E) − V
↑

eff(E + 1)|0〉〈0|
|0〉. (36)

Similarly for V↓
eff(E), we get

V↓
eff(E) = 1

4
V 2

1 |0〉〈0| 1

C−1(E) − |0〉〈0|V↑
eff(E − 1)|0〉〈0|

|0〉〈0|

= V
↓

eff(E)|0〉〈0| (37)

where the function V
↓

eff(E) is defined as

V
↓

eff(E) ≡ 1

4
V 2

1 〈0| 1

C−1(E) − V
↓

eff(E − 1)|0〉〈0|
|0〉. (38)

Accordingly, the operator Veff(E) can be written as

Veff(E) = Veff(E)|0〉〈0| = (
V

↓
eff(E) + V

↑
eff(E)

)|0〉〈0|. (39)
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Using this in equation (29), we get

GD(E) = 1

(1E − H0 − (V0 + Veff(E))|0〉〈0|) . (40)

In terms of the Green function for the operator H0, we write

GD(E) = G0 1

(1 − H1(E)G0)
(41)

where

G0 = 1

(1E − H 0)
and H1(E) = (V0 + Veff(E))|0〉〈0| = V (E)|0〉〈0|. (42)

The operator (1 − H1(E)G0)−1 can be evaluated easily,

1

(1 − H1(E)G0)
= 1 + V (E)|0〉〈0|G0 + V (E)2G0

0,0|0〉〈0|G0 + · · ·

= 1 +
V (E)

1 − V (E)G0
0,0

|0〉〈0|G0 (43)

and therefore,

GD = G0 +
V (E)

1 − V (E)G0
0,0

G0|0〉〈0|G0. (44)

In the site representation, this equation reads

GD
i,j = G0

i,j +
V (E)

1 − V (E)G0
0,0

G0
i,0G0

0,j (45)

and for i = j = 0, we get

GD
0,0 = G0

0,0 +
V (E)

1 − V (E)G0
0,0

G0
0,0G0

0,0

= G0
0,0

1 − V (E)G0
0,0

. (46)

The only remaining task is to find the function V (E) = V0 + Veff(E), with Veff(E) =
V

↑
eff(E) + V

↓
eff(E). Let us begin with V

↑
eff(E) defined in equation (36):

V
↑

eff(E) = 1

4
V 2

1 〈0| 1

C(E + 1) − V
↑

eff(E + 1)|0〉〈0|
|0〉

= 1

4
V 2

1 〈0| 1

(G0(E + 1))−1 − (
V0 + V

↑
eff(E + 1)

)|0〉〈0|
|0〉

= 1

4
V 2

1 〈0| G0(E + 1)

1 − (
V0 + V

↑
eff(E + 1)

)|0〉〈0|G0(E + 1)
|0〉 (47)

this last expression, following the procedure beginning with equation (41), is easily found to
give a result very similar to equation (46),

V
↑

eff(E) = 1

4
V 2

1

G0
0,0(E + 1)

1 − (
V0 + V

↑
eff(E + 1)

)
G0

0,0(E + 1)

=
1
4V 2

1(
1/G0

0,0(E + 1) − V0
) − V

↑
eff(E + 1)

. (48)
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Iterating this equation, we get the final expression

V
↑

eff(E) =
1
4V 2

1(
1
/
G0

0,0(E + 1) − V0
) − 1

4 V 2
1

(1/G0
0,0(E+2)−V0)−

1
4 V 2

1

...

. (49)

Similarly for V
↓

eff(E), we find

V
↓

eff(E) =
1
4V 2

1(
1
/
G0

0,0(E − 1) − V0
) − 1

4 V 2
1

(1/G0
0,0(E−2)−V0)−

1
4 V 2

1

...

. (50)

For the H0 given in equation (33), it is well known that 1
/
G0

0,0(E) = ±√
E2 − 4T 2 (the

sign choice will be discussed later). With this, the Floquet–Green function for the system in
equation (32) is completely solved in terms of the parameters (T , V0, V1, E). Explicitly,

GD
0,0(E) = 2/V1

a(E) − 2
V1

Veff(E)
(51)

where

Veff(E) = V1/2

a(E + 1) − 1

a(E+2)− 1
...

+
V1/2

a(E − 1) − 1

a(E−2)− 1
...

(52)

and to simplify the notation we defined the function

a(E) = ±2
√

E2 − 4T 2

V1
− 2

V0

V1
. (53)

The choice in the sign of the function ±√
E2 − 4T 2 is not a trivial one. For a system with

perfect spatial periodicity, it is irrelevant; however, our system does not have such periodicity;
the presence of the defect potential does force a choice in the sign. One can show that
GD

0,i = GD
0,0R±(E)|i| where R±(E) = E

2T
±

√
(E/2T )2 − 1. When E > 2T > 0, R+ > 1 and

R− < 1. The first choice (+) is not physical since it gives a Green function that diverges in
space; this forces us to choose the negative sign for the square root in the case E > 2T > 0. A
similar analysis shows that for E < −2T < 0, the plus sign in the square root is required. This
sign change can be accomplished if we replace

√
(E/2T )2 − 1 by (E/2T )

√
1 − (2T/E)2.

Using this, the correct form for equation (53) is

a(E) = 2E

V1

√
1 −

(
2T

E

)2

− 2
V0

V1
. (54)

It could be argued that one does not have to bother about taking care of the proper sign in
G0

0,0(E) for |E| > 2T because it is outside the band −2T < E < 2T where there might not
even be any states. This is not true because of the possible existence of bound states outside
the band (which is clearly the case for V0 �= 0, V1 = 0). Another argument is that some of
the off-diagonal (in Floquet index) elements of the Floquet–Green function will necessarily
have energies outside the band, i.e., if E = αh̄ω is inside the band, E + nh̄ω is obviously not
necessarily in it, and therefore, the matrix elements Gα+n,α(0, j) = Gα+n,α(0, 0)(1/R(E + n))j

when |E +nh̄ω| > 2T will not converge as j → ∞ unless the previously mentioned selection
of sign is made for the square root in R(E + n) and a(E + n).
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Figure 1. LDOS for a tight-binding Hamiltonian with a defect energy oscillating in time.
T = 1, V0 = 0 (units of h̄ω). The width of the band (4T ) is larger than h̄ω.

The LDOS at the defect location can be calculated from the diagonal elements of the
Green function with the usual formula,

ρ0(E) = ∓ 1

π
Im

(
GD

0,0(E ± iγ )
)
. (55)

In the derivation of this equation, which relates the density of states to the Green function,
it is necessary to include ±iγ in the energy to get the contribution, in the density of states,
of the discrete part of the spectrum (poles). In our numerical calculations, γ = 10−7 unless
otherwise specified.

Figure 1 shows a plot of ρ0(E), for different values of V1, where all parameters are given
in units of h̄ω, and V0 = 0, T = 1. In (a) it can be seen that the LDOS is very close to the
expected LDOS for the static part of the Hamiltonian (H0), with the allowed energy band
located between −2T and 2T . As the value of V1 is increased, one can see some of the
eigenstates leaking out of the band and populating the region outside the interval [−2, 2]. The
first ones to do so are the unperturbed eigenstates in ‘resonance’ with the oscillating potential;
that is the ones with energy close to ±h̄ω. For V1 = 2 the distribution is even broader with
the features of the unperturbed Hamiltonian still recognizable. At V1 = 4 the density of states
has significantly spread over the region −6 < E < 6. For no value of V1 do we find any poles
(localized states) in the system.

Figure 2 shows the LDOS for T = 1, V0 = 1 and various values of V1. For a very small
V1 we see the LDOS expected for a tight-binding model with an impurity, where the impurity
produces a localized state (pole in the density of states) at an energy sign(V0)

√
4T 2 + V0

2.
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Figure 2. LDOS for different values of the amplitude of the oscillation. As in figure 1, T = 1 and
the defect has a static on-site energy V0 = 1. No poles were obtained at any value of V1.

A ‘pole’ can be seen in (a) at the expected value
√

4T 2 + V0
2 = √

5. Closer analysis of this
peak near

√
5 reveals that this is actually not a true pole. If this peak in the LDOS were truly a

pole, its height should be proportional to 1/γ and therefore it should go to infinity as γ → 0.
For all the values of V1 shown in figure 2, the height of the peak eventually saturates as γ is
made smaller. For V1 = 0.0001 the height as a function of γ saturates for γ = 10−11; for
V1 = 0.01 we get a γ ∼ 10−7. For larger values of V1, saturation occurs for even smaller
values of γ . This implies that the bound state of the static potential, in the presence of the
oscillating potential, acquires a finite lifetime and therefore one can say that the oscillating
potential ‘ionizes’ the bound state of the static part of the Hamiltonian.

It has been shown before [17] that, for an attractive δ-function potential, the addition of a
time-periodic perturbation to the strength of the δ-function always ‘ionizes’ the bound state.
It is actually easy to understand why this is so. The time-periodic perturbation couples the
unperturbed Hamiltonian’s bound state (energy EB) with all the unperturbed states at energies
EB + n (in units of h̄ω). Clearly, for any EB there is a value of n above which the unperturbed
states will be in the continuum (EB + n > 0). That means that the bound state has a finite
probability to transit into those states and escape. Because of this, the resonance associated
with it has an intrinsic non-zero width given by the inverse of the lifetime. In our case, in
addition to the localized time-independent potential (the V0 part of the defect energy), we have
the tight-binding Hamiltonian, which has a continuum in the energy interval [−2T, 2T ]. The
argument that justifies the absence of a bound state in the δ-function case, applies also for our
Hamiltonian: if the width of the energy band of H0 (4T ) is greater than 1 (h̄ω), irrespective
of the energy of the bound state (EB) associated with V0, there will be at least one energy
EB + n (for some n) that will fall inside the extended state band (the continuum). The bound
state of the time-independent Hamiltonian, due to the time-harmonic potential, is therefore
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Figure 3. LDOS for a small band width. T = 0.1(h̄ω) and therefore, the width of the band (4T )
is smaller than h̄ω. No static on-site energy, V0 = 0.

coupled to at least one extended state and therefore no longer becomes bound (for 4T > 1).
For small values of V1, these kinds of narrow resonances associated with bound states are
called quasi-bound states and are typical of multichannel Hamiltonians [42]. At V1 = 0.1 it is
interesting to notice the ‘daughter’ resonances on both sides of the bound state resonance at√

5 ± 1. In fact there is an infinite number of these ‘daughter’ resonances at
√

5 + n with an
amplitude that decays quickly with |n|. For large values of V1, a complex structure of peaks
has developed, separated in energy by integer values of h̄ω. This is what would be expected
if instead of a HD potential we had a harmonic oscillator coupled to the electron. For large
coupling (V1), the density of states of the oscillator becomes dominant in the LDOS of the
electron.

In figure 3 we study an interesting regime. For T = 0.1, the width of the energy band of
H0 (4T = 0.4) is smaller than 1. In this figure, V0 = 0, and we look at different values of V1.
In (a) the density of states is very close to the well known LDOS for a tight-binding model
without a defect. Very small replica bands can be observed around E = ±1. In (b) these
replica bands are more noticeable. For V1 = 1 in (c), the shape of the LDOS inside the bands
is starting to change. For V1 = 2 and higher, the LDOS looks very much like the LDOS for a
harmonic oscillator, highly peaked around E = n(h̄ω).

For figure 4 we chose again T = 0.1, and V0 = 0.1. This gives an energy of the bound
state of HS of EB = √

0.04 + 0.01 = 0.2236. Because the band width is smaller than 1,
the bound state is coupled to unperturbed states with energies EB + n which are all outside
the extended state band. This means one would expect that, for small V1, as in figure 4(a),
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Figure 4. LDOS for T = 0.1, V0 = 0.1 and different values of V1. There is a pole on the right of
the extended state band for V1 < 1.

there will be a true pole in the density of states at an energy EB ∼ 0.223. Indeed, within our
numerical possibilities, no saturation in the height of the peak was detected with decreasing
γ . In (b), V1 = 0.4. We still have a pole on the right of the band, but its energy is down to
EB = 0.2185. The pole moves towards the extended state band as we increase V1. Notice
that there are replica bands of extended states centred around E = n, as well as replica poles
(too small to be seen in figure 3). In (c), for V1 = 1.0 there is still a pole, located right next
to the edge of the band. In the figure, this pole is too close to be discernible from the edge of
the continuum of extended states. At V1 = 1.6 in (d), the pole has already disappeared inside
the band; there are no longer localized states in the system and the spectrum of the system
resembles the spectrum of the harmonic oscillator, with density of states highly peaked near
E = 0.1 + n.

In figure 5 we show a sequence of plots where T = 0.1, V0 = 0.4 for different values of
V1. In (a), V1 = 0.1, and we find a pole very close to EB =

√
4T 2 + V 2

0 = 0.447, which is
the location of the pole for the static potential case (V1 = 0). For V1 = 0.4 in figure 5(b),
the pole has moved to EB ∼ 0.443 and the ‘replica bands’ are clearly seen on the right and
left of the main band (near E = 0). Also two ‘daughter’ poles are large enough to be seen at
E = 0.443 ± 1. In (c) V1 = 1, the poles have moved to E = 0.424 + nh̄ω, and the relative
amplitude of the continuum part of the spectrum is growing smaller compared to the set of
localized states (poles), for increasing V1 values. The region of the energy axis where poles
have significant residue to be observable in the figure grows with V1 For (d ) V1 = 2, the
poles are now at E ∼ 0.3955 + n. As the value of V1 is increased further, the pole no longer
moves from this location and the point spectrum (poles) becomes more and more important
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Figure 5. LDOS for T = 0.1, V0 = 0.4 and different values of V1. There are poles for all values
of V1. The pole location changes from 0.44 + n for V1 → 0 to ∼0.4 + n for V1 → ∞, with n any
integer.

as compared to the continuum spectrum. For all values of V1, for T = 0.1 and V0 = 0.4 there
is a pole.

It can be proved easily that the location of the poles behaves in the following way for any
values of V0, V1 and T (provided 4T < 1(h̄ω)):

EB →
√

4T 2 + V 2
0 + n for V1 → 0 EB → V0 + n for V1 → ∞. (56)

There would be no pole in any of these limits if the expected location of the pole (in this
limit) falls inside the extended states band between −2T , 2T . This is the case in figure 4
(T = 0.1, V0 = 0.1), where, when V1 → 0, pole location →

√
4T 2 + V 2

0 = 0.223 and for
V1 → ∞, expected ‘pole’ location → V0 = 0.1, which is inside the band. Already for V1 > 1
the pole has moved into that band (it is no longer a pole), generating a peak in the density of
states, which continues to move inside the band for increasing values of V1 until it settles at
E = V0 + n ∼ 0.1 + n for V1 > 2.

5. Conclusions

Within the general framework of the t–t ′ method, one can define the Floquet–Green function
corresponding to a time-periodic Hamiltonian, from which transmission properties, density of
states and wave packet propagation can be calculated. We have shown that in the general case of
harmonic driving, the Floquet–Green function of any such system can be written in a compact
way and calculated efficiently using MCF. We have also derived an expression for the (energy-
dependent) dynamical effective potential (DEP) which includes the effect of the coupling to
the different energy states due to the time periodicity of the system. The DEP allows one to
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calculate, to any precision, the diagonal of the Floquet–Green function operator from which
the density of states can be found easily. Calculation of the DEP could provide an interesting
tool to help understand effects such as dynamical stabilization of atoms in a strong laser
field [12].

We applied this formalism to the case of a tight-binding model with a defect energy
which depends harmonically on time. The transmission through this defect potential has been
calculated before and compared to the transmission through a tight-binding Hamiltonian with
a defect that couples the electron with phonon degrees of freedom only present at the defect
location [29]. We calculated the diagonal of the Floquet–Green function at the defect location(
GD

0,0

)
and from it, the LDOS as a function of energy for different values of the parameters

of the system. We found that there is a qualitative difference in the behaviour of the system
for the regimes 4T > h̄ω and 4T < h̄ω. In both cases we found that the LDOS spreads
over a larger range of energies as the parameter V1 is increased. However, in the first case
there are no localized states for any values of the parameters V0, V1. This result is due to the
fact that the oscillating potential couples the bound state with at least one extended state of
the unperturbed Hamiltonian, producing a finite probability of escape from the bound state.
Turning on the oscillating potential will therefore, in all cases (provided 4T > h̄ω), ‘ionize’
the bound state (if any) of the static part of the Hamiltonian. This result is consistent with the
work of Costin et al [17] which shows that the bound state of an attractive δ-function potential
does not remain bound when a time-periodic driving is turned on (except for a very particular
class of non-harmonic periodic driving). For the case 4T < h̄ω, there may or may not be any
localized states in the system depending on the different values of V0 and V1. A bound state
outside the band can only be coupled to energy eigenstates of the static Hamiltonian which are
all localized. The effect of the oscillating potential changes the location of the localized state
energy, and produces an infinite chain of poles in the LDOS, all located at multiples of h̄ω

from each other. The pole location changes with the parameter V1 according to equation (56)
above. In both cases (4T > h̄ω and 4T < h̄ω), the LDOS makes a transition from the LDOS
of the static defect problem, for small V1, to a harmonic-oscillator-like LDOS for V1 large.
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